
Translator’s Introduction

Euler wrote Recherches sur les racines imaginaires des équations while at the

Berlin Academy, and it is found in the Mémoires de l’académie des sciences

de Berlin, 1751, pages 222–288.

In the first part of this article, Euler concerns himself with what today we

call the Fundamental Theorem of Algebra, or as Euler says in section 49,

Every rational function of a variable x, as

xm +Axm−1 +Bxm−2 + · · ·

can always be resolved into real factors, either simple of the form x + p, or

else double of the form xx+ px+ q.

Intimately related to this is the idea of imaginary numbers, which Euler

treats in depth.

Euler works out the factorization for x4 +2x3 +4x2 +2x+1 using clever,

though accessible, algebra. Then he works out the factorization for a more

general degree 4 equation. He discusses equations of odd and even degree,

and shows how the number of real and imaginary factors relates to the parity

of the degree of the equation. He continues by considering a large number of

special cases, discussing each one in detail and relating them to each other.

Others have found that Euler did not completely sew up the matter in his

proof, and indeed a complete proof of the Fundamental Theorem of Algebra

that satisfies modern standards did not occur until over a century after this

article was written.

Nevertheless, the reader will be well rewarded for following along as Euler

works through this problem. There is much skillful algebra, and it is interest-

ing to see basic results intermixed with more advanced manipulations. Euler

is simply telling you what he is thinking.

Euler says the proof is complete in section 49, and we can perhaps detect

a slight degree of unease when he writes that “in case one wanted to have

trouble recognizing the correctness of these proofs, I am going to add several

propositions concerning this subject that will not depend on the preceding,

and whose truth will serve to lift any doubt that one might still have.” Euler

then offers additional proofs of some of the special cases.

⋄

This flows into the second half of the article, where Euler discusses the

ways a quantity can be imaginary. For Euler, imaginary means “neither

greater than zero, nor less than zero, nor equal to zero,” and he gives as an

example
√
−1, or more generally a+ b

√
−1. So Euler addresses the question
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of whether there might be other ways a quantity can be imaginary, perhaps

without being reducible to this form.

To this end, Euler shows that when you apply the common operations of

analysis—addition, subtraction, multiplication, and division—to quantities

of the canonical form, the result can be reduced to the canonical form.

He then goes further and considers whether perhaps transcendental oper-

ations might yield quantities that are imaginary in some distinct way, and

shows that the known transcendental operations—those involving logarithms,

angles, and the like—all yield quantities that can be reduced to the canonical

form.

This involves a remarkably clear and insightful explanation of raising real

and imaginary quantities to real and imaginary powers, of the trigonometric

functions applied to imaginary arguments, and of logarithms and antiloga-

rithms of imaginary quantities.

Euler’s purpose is to demonstrate that all of these operations yield quan-

tities, often an infinity of quantities, that can be written in the canonical

form. But the results themselves and Euler’s explanation of them offer much

to the contemporary reader who is interested in what might be meant by

these kinds of expressions. As just one example, Euler observes that the ex-

pression
√
−1 raised to

√
−1 has an infinity of values, and that, surprisingly,

they are all real. More generally, the periodic aspect of the transcendental

operations when applied to imaginary quantities is explained quite clearly.

Many of the familiar identities involving e and the trigonometric functions

are laid out.

The ideas in this article are for the most part algebraic, but not exclusively

so. Intuitive use of the intermediate value theorem enters into his proof early

on, when he argues that every odd-degree equation has at least one real root,

a result which he uses repeatedly. And in the second part of the article, when

Euler shows how to find all the roots of an imaginary quantity M +Ni his

exposition is tantalizingly close to what we think of as the complex plane, an

idea that was articulated in modern form about a half century later.

⋄

The reader who is new to Euler might be surprised to discover how similar

Euler’s notation is to our own, and how modern his view of mathematics is.

Euler does use the terms “simple factor” and “double factor” where we

might say “linear factor” and “quadratic factor”, but after one reads it Euler’s

way, one might wonder why we do it differently.
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Euler tends to write xx instead of x2, and one gets used to that quickly

enough. This was probably done to make the typesetting easier, and was

common at the time.

In this translation, I have sometimes written i where Euler has written√
−1. We must note, however, that this substitution is not completely un-

problematical, and should not be done mechanically. Euler knew very well,

and articulates in several places in this article, that
√
−1 has a dual nature,

that every quantity has two square roots, −1 included.

So when Euler is referring to that dual nature, it can be odd, or even

misleading, to replace
√
−1 with i. At other times, Euler’s use of

√
−1 is

close enough, although not identical to, our notion of i that it seems justified

to use i, in order not to distract the contemporary reader. But the reader

should note that, in this article, Euler never wrote i, but always wrote
√
−1.

⋄

Euler writes in a clear and direct way, as if speaking to the reader. There

is a complete lack of pretense and affectation. Euler wrote for the interested,

informed reader, but he did not assume that the reader already knew what

he had to say.

To express his ideas, Euler tends to use active verbs in preference to nouns,

and he tends to focus on the operations and activities involved, and not on

the definitions. He defines things as he needs them, and his definitions tend

to be simple.

Euler manipulates linguistic expressions with the same ease that he ma-

nipulates mathematical expressions, and while his sentences are sometimes

long and complex, they never ramble. Throughout, the reader will perceive

a sense of enthusiasm and discovery, and because Euler is as generous as he

is skilled, and because of the tone and manner of the writing, the reader is

led to feel as though he is in on the discovery himself.

None of this occurs with the slightest degree of condescension or oversim-

plification, and Euler does credit the reader with an attention span equal

to his own (as, for example, in the detailed treatment of the many special

cases in the first part of the article). Still, interesting and beautiful results

sometimes pop out as if from nowhere, and the reader wonders how that

happened. But it is all right there. The reader has experienced an “Euler

moment,” and wishes that more mathematical writing were like this.

Pittsburgh, 2005

Copyright c⃝ 2005 Todd Doucet. All Rights Reserved.

3


